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I. INTRODUCTION

Early studies of boundary layer control were concerned primarily with

airfoils where Suction was found to be a promising control measure .1 Heating
of the boundary was first studied for gases, for which a temperature rise
corresponds to an increase in viscosity, and consequently to an increase in

boundary layer thickness. Heating was therefore considered as a destabiliz-

ing factor.
2 The opposite effect  is achieved in water , where an increase in

temperature reduces the kinematic viscosity and consequently, the boundary
layer thickness. The shift of emphasis to boundary layer control in water

coincided with the discovery by Kramer, in 1960, that a compliant boundary,

specifically a rubber membrane, can delay transition from laminar to tur-

bulent flow.
3

The application of boundary layer control techniques to submarines

in particular is desirable since boundary layer control would not only

reduce drag, but also turbulence-generated self-noise which masks sonar

signals at the higher speeds. Furthermore, the reduced drag entails

reduced propulsive power requirements. This, in turn, permits a smaller

hull displacement, reduced auxiliary power requirements, and thus a reduc-

tion of machinery—generated radiated noise as well. Problems that may

be encountered in the successful application of boundary layer control

techniques to submarines concern the nature of the environment in which
the submarine operates. That is, the possible destabilizing effects of

free—stream turbulence, acoustic disturbances, hull vibrations, etc.

Structure—borne noise has no effect on drag in current submarines,

because most of the hull plating, and in fact, al l of the pressure hull

plat ing not concealed by thin plating, is exposed to the turbulent boundary

layer at all speeds. However, if the boundary layer is controlled by, say,

heating and suction, the vibrating pressure hul l  pla ting will be in contact

with the laminar boundary layer. This report, in par t icular , details an

investigation into the potential boundary layer destabilizing action of

machinery generated structure—borne noise in submarine hull plating ,

especially the effect  of flexural  waves in submarine hull  plat ing on t ran—

sition as modelled by the Orr—Souinerfeld equation .
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II. THE CHARACTERISTICS OF STRUCTURE-BORNE NOISE IN SUBMARINE HULLS

Machinery generated structure—borne noise in operational submarines
consists of tonals caused by, for example, blade passage in pumps as well

as broad—band components caused by, for example, turbulent flow in piping

systems. In all cases the excitation levels are such that the vibration

response of the hull plating is the result of a linear phenomenon. The

spectrum of machinery generated structure-borne noise can be considered

to range from 30 Hz to 10 kHz .

Machinery induced vibratory forces are transmitted through a foundation

structure to the hull , which responds to these excitations primarily in

flexure. Freely propagating flexural waves in a plate exhibit dispersion .

They display a phase velocity, in vacuo

(c h~ )
C

f 
~2 t~ 

(1)

where c = compressional wave velocity in plates

h = plate thickness

= frequency in radian/sec.

For completeness, it should be mentioned that at the lower frequencies

this result is modif ied somewhat by the effect of water loading which
tends to reduce the velocity. Also, at the higher f requencies , the above

equation must be modified to account fur rotary inertia and shear effects.

However, both corrections are not significant to the present task.

Hull plating typically ranges in thickness from 5 cm. (2 in.) for

the pressure hull to 1 cm. (3/8 in.) for the faired portions of the hull.

The overall charcteristics of the vibration field that is associated with

the hull plating may be conveniently summarized by plotting the appro-

priate phase—velocity vs. frequency relationship for relevant parameters.

This is shown in Fig. 1. It can be verified that the flexura l wave

velocity in the pressure hull plating exceeds the free stream flow ye-

locity over the entire ra nge of interest . Furthermore, it is noted that

the flexural wave velocity exceeds the sound velocity in water only above

3
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the coincidence frequency, which is approximately 5 kHz for representative

5 cm. (2 in.) pressure hull plating.

In addition to freely propagating waves in the hull plating , localized,

or near—field, vibrations are present in the immediate vicinity of an equip-

ment—hull interface as well as at any major discontinuity in the impedance

of the hull structure. At low frequencies major hull discontinuities are

limited to bulkheads, but at higher frequencies small frames also provide
significant discontinuities to the hull plating. The most sign ificant

difference between these near-field vibrations and propagating waves is

that for a given frequency the near—field vibrations contain a continuous

phase velocity, or wavenumber, spectrum. If one models this effect as a

uniform line excited plate of infinite extent, or equivalently a point ex-

cited beam, then the phase velocity spectrum of the plating response at
the drive point is as shown in Fig. 2 for a representative value of struc-

tural damping given by ~ 
= O.1. 4 Thus, although the near-field contains

phase velocity components c , such that C
f
/C >> 1, the magnitudes of these

components are low relative to the component that corresponds to the char-

acteristics of freely propagating waves in the plating , i.e., c
f/c = 1.
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from the point corresponding to the phase velocity of propagating waves.

A measure of the potential destabilizing effect of this near-field

may be obtained by relating it to an “equivalent” propagating field.
The meaning of equivalent is equal wavenumber and phase velocity. As an

example consider the flexural response of thin hull plating at the high

end of the frequency range of interest, say 10 kHz. From Eq. 2, at th is

frequency and assuming a speed of 80 knots, coincidence occurs at

c
r
/cf E cTS/cf 2 x 10 2

. From this value the spectrum level continues

to decay at a rate proportional to (c
r
/cf) . Referring to Fig. 2 the

level of this component is down by a factor of 1.6 x io
8 

from the level

of the propagating component. Thus, the near-fields surrounding local

excitations or discontinuities represent a comparable threat to stabiliza—

tion as the equivalent propagating field whose level is down by a factor

of 1.6 x 10 8 or 156 dB.
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V. EXPERIMENTAL DATA RELEVANT TO THE P BOBLEM OF STRUCTURE-BORNE NOISE

EFFECTS ON TRANSITION

A. Destabilization with Coincidence

In this section the salient features of an experimental study

of the effects of boundary vibrations on transition are presented. The

work was performed by Schilz in 1969.12 Even though this work was

funded by the U.S.A.F.  European Office of Aerospace Research and published,

albeit in German , it appears to have attracted little notice in the U.S.

1. Description of Tests

It will be found in these tests that, as discussed in

Section IV., the effects of flexural waves propagating in a plane boundary

are most significant if the disturbance is coincident with a T—S instability.

The T—S phase velocity lies between 1 and 20 rn/s in Schilz ’s tests. No
• practical structural material can achieve these low velocities in the fre-

quency range of interest. Schilz overcame this difficulty by using a

transducer array wherein adjoining elements are driven out—of-phase. One

pair of elements thus simulates one wavelength. Since the spacing of the

transducers in a given test is invariant, and can only be varied discon—

tinuously between tests, increasing values of U0, are associated in each

test with rising frequencies. The boundary condition thus achieved dis-

plays, not surprisingly, a strong harmonic content.

The displacement amplitudes of the vibrating boundary were measured

with a capacitance probe. Hot wire anemometers were used to measure the

f low velocities. The tests were performed on a flat plate with a sharp

leading edge. Unless tripped, the laminar boundary layer extends over the

entire plate (0.5 in).

2. ~~~erimental Results

Destabilization occurs primarily within the neutral sta-

bility curve of T-S waves, but was occasionally observed at lower fre-

quencies. Only semiquantitative measurements could be obtained for the

threshold amplitude of flexural waves required to trip the boundary
• layer for different values of U .  It was found that for the coincidence

conditions, the amplitudes required to affect the boundary layer are
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much smaller (10 2 
millimeters or less) than the boundary layer displace-

ment thickness (0.4 millimeters) . The resu.tts show a marked decrease with

increasing U
0,

A marked rise of the threshold occurs on both sides of the coincidence

frequency, defined as the frequency for which the effective phase velocity

of the “flexural wave” matches the T-S velocity. When the disturbance is

in the form of a band of noise, only that band which contains the coin-

cidence frequency shifts the transition point upstream.

3. Conclusions

The principal outcome of the experiments is that the con-

clusion drawn in Section IV., namely that it is improbable that machinery

generated structure-borne noise in the form of propagating waves cou ld

destabilize a laminar boundary layer , appears to be verified .

Another conclusion , drawn by Schilz and not unrelated to the problem

at hand, is that structure—borne noise may provide a means for actually

suppressing turbulence, i.e., delaying transition. For this hypothesis,
13 .Schilz relies heavily on Benjamin ’s analysis. Benjamin defines a type

A instability as the T—S wave modified by the presence of a flexible

boundary. He shows that this is an energy—deficient wave mode. Damping

at a flexible boundary further enhances this energy deficiency, thus

leading to energy flow from the main stream to the boundary layer , and

consequently further destabilization . Schilz postulates that instead of

supplying the needed energy by diverting it from the main stream, as sug-

gested by Benjamin, this energy can be provided by actively exciting
flexural waves in the boundary . These waves convey energy to the boun-

dary layer, thus compensating for energy dissipation in the T-S waves.

The flexural waves thus play the role of negative damping, which can be

anticipated to have a stabilizing effect, since posi tive damping exer ts

a destabilizing influence. At coincidence , the cond ition for energy

flow from the wall into the fluid depends on the phase. (Becker
14 cmcludes

that for any stable inviscid velocity profile, energy flow is from the

fluid to the vibrating boundary. This can presumably be assimilated to

positive damping by the boundary, which Benjamin showed to be destabilizing .

12 
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It would appear the Schilz ’s techni que of fo rcing energy to flow from the
wall into the boundary layer can only be implemented for unstable profiles.)

Schilz finds that he does indeed achieve stabilization over a broad

phase angle ~~ centered approximately on 180°, i .e . ,  for phase opposition

between T—S waves and the wall vibrations. These results were obtained

as follows : the boundary layer is tripped to generate T-S waves , the re-

suiting transition point being located downstream of the flexural array.

The array i. then energized to produce flexural waves whose velocity

coincides with that of the T-S waves. Appropriate amplitudes and A4 180°

can lead to stabilization. For a 1800 phase angle , an increase in the

flexural wave amplitude f i rs t  increases the critical Reynolds number and,

for amplitudes exceeding an optimal amplitude 3 x 10
6 meters for U =

27.4 m/s, reduces it. If the boundary layer is not tripped , these extremely

low flexural wave amplitudes have a destabilizing effect, presumably be-

cause they are in phase with the T—S waves they generate, rather than being

out of phase with the T-S waves generated by the tripping wire .

B. Destabilization Without Coincidence

In a separate paper Schilz discusses non—linear effects that

may be important when coincidence is not achieved.
15 A more deta iled

description of this type of circumstance , i.e., non-coincidence, can be

found in the reports by Norair,16 documenting their preliminary wind

tunnel experiments on the effects of noise on transition .

1. Description of Tests

A 4—percent—thick straight laminar suction wing of 17-

foot chord was investigated in the Norair 7- by 10-foot low turbulence

wind tunnel at a = 00 angle of attack in the presence of external sound ,

and in addition, panel vibration. The sound consisted of discrete

frequencies and octave bands of random noise in the 150 to 4000 cps

frequency range, while the vibration frequencies were 100, 190, and

1290 cps.

• Considerations of the type of structure contemplated by Norair

indicated that peak panel accelerations of about lOg in the 100 to 1000

cycle frequency range could be expected. Thus, to answer the question as

13
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to the potential influence of mechanical vibrations of an external wing
surface on the behavior of a laminar (suction) wing , a high—speed , d.c.

motor—driven, reciprocating mass shaker was attached to the wing . The

motor power-limited the shaker to a frequency of about 260 Hz and a 46 g
peak panel acceleration for intermittent operation.

2. Experimental Results

In all instances of lOg peak acceleration or more, suction

had to be increased above the minimum drag value to maintain full chord

laminar flow. For a peak panel velocity ratio v/U = 2.0 x lO
s, the

maintenance of full chord laminar flow by raising suction level required

a 24 percen t increase in suction coefficient and a correspond ing 5 percen t

increase in equivalent drag, compared to a case with no vibration. Since

panel veloc ity ratios, v/U~ , in the order of 2 x ~~~~ are possible for

thin straight wing laminar suction aircraft, it was concluded that some

additional suction might be required.

To interpret the magnitude of the vibrat ion leve ls in the Norair

tests to the problem of structure-borne noise in submarine hull plating,

consider the example of a machine with, say, a motor imbalance that pro-

duces a 1 lb. vibratory force on the hull plating. If one crudely models

the hull plating as an infinite elastic plate in order to obtain an es-

timate of its impedance, then 2 inch plating yields a dr ive point imped-

ance z - ~~ ib./ in./ sec . Thus , the excitation will produce hul l  accel era-

tions of approximately

a/g = uv/g = 2 1T(l) (l0 3/386)f

- 1.5 x l0~~ f

where f is the excitation frequency in Hz. If one considers 5 kHz the

highest frequency of interest the maximum plating acceleration levels

are given by a/g ~ 10 1 compared to a/g 10 in the Norair tests.

This particular result is somewhat disturbing in that although

d.stabilization required structure-borne noise levels two orders of

magnitude greater than one expects in submarine hull plating , the

mechanism behind the destabilization process appears to be relevant.

14
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For example, the structure—borne noise levels in the Norair test, as well

as in an operational submarine, are small in terms of both the boundary

layer thickness and the characteristic structural dimensions, viz, plating I

thickness and length. Unforturnately, at present the available Norair 
-

~

documentation covers their preliminary results. If, in fact, their work

- or similar work is continuing , it would be most relevant to the problem
at hand.

I
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VI. A MECHANICAL ANALOGUE TO BOUNDARY LAYER STABILITY

A. The Analogue System

During the course of this study a mechanical analogue to the

Orr-Sommerfeld equation was discovered. This analogue was pursued and

the results are presented in this section. A qualitative description of

some features of the submarine structure—borne noise problem is presented,

i .e . ,  interpreted, in terms of the analogue system in Section B.

Consider the steady state vibrations of an elastic plate. For present

— 
purposes , the p la te  is taken to be of in f in i t e  extent along the x direction,

of “characteristic” width 9- and thickness h (Fig. 6). The partial differ-

ent ial equation governing the vibration response of a plate can be obtained

from the Timoshenko-Mindlin model of plate vibrations.
17 

This model allows ,

for the same structural wavelength , two different modes of wave propagation

corresponding to two different ratios of shear to bending motion. Or,

stated differently, for the same frequency this model allows two different

modes of wave propagation corresponding to two different structural wave-

lengths. The model is generally considered valid up to frequencies that

produce structural wavelengths such that (A
s/h) ~ 

0(10).

Using the rotation of the plating cross—section in the y—z plane,

y(x ,y), as the response parameter of the plate, the governing partial

d i f f e r e n t i a l  equation of motion may be expressed as

(v 2 + ~
2 ] [ V 2 

+ (c
~

/ c ) 2
~

2 1y ( x iy )  - ~
2 {~2 2y (x ,y )

+ ~ [V 2 
+ (c

d
/c ) 2c12)N(x,y)} = 0 (3)

where

V 2 
= ~J 2/3x2 + 32/3y2)

x,y = coordinate axes nondimensionalized to 9.

9. = characteristic plate dimension along the y axis

h = plate thickness

B = slenderness ratio of plate = /11 (9./h)

c
d
/C

S 
= ratio of dilatational to shear wave speed in plate

16 

4



- - -~ - • —~~~~ —-—~~~~~~~~ - - ~—~~~~ -~~-~~ —• - — • - • ~~ ~~~~~~~~~~~ —-~~~-~~~~~ -~~ -

= nondimensionalized frequency = uiQ./c
d 

where u is the circular
frequency

Q(x,y) distributed lateral force acting on the plate. nondimensionalized

to 12E/(l — v 2 )

M (x,y) = distributed moment acting on the plate, nondimensionalized to

12EZ/(l — 
2)

i:,v = elastic modulus and Poisson ’s ratio of plating material

Now consider the case where the lateral forces and moments, Q and M,

represent the response of a homogeneous and isotropic , but loca l ly

reacting , foundation on which the plate is resting (Fig. 6). This may

be expressed in terms of the foundation ’s impedanc~~ ZQ(Y) and ZM(y)

Q(x,y) = iI~ZQ
(Y)Y (XtY)

(4)
M(x,y) = _ icZZ~~(y )Y (x ~~y)

Further, the assumption is made that for the plate under consideration

(c
d/c)

2 
= 1 (5)

Altliouqh this is not ordinarily the case for homogeneous plating materials,

one can envision this being accomplished by means of a sandwich-like plate

construction.

Substituting Eqs. 4 and 5 into Eq. 3 yields

+ + ~
2

J y(x,y) — B
2{~2

2y(x,y) —

+ (V2 + ~l
2) [ Z ~~(y)Y(x ?y))]} = 0 (6)

It follows that the wave number spectrum in the x direction ol the plate ’s

response, as given by the Fourier transform of Eq. 6, satisfies the

equation

17
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2 ”  4 2 2
~ 
(y) — 2fl ~ (y) + n ¶~(y) = B (fl ~(y) — i~ B [(ZQ

(Y)~ 
(~ H

+ [Z~~(y )~~ (y ) 1  — n
2 (Z~~(y)i.(y)) 1} (7)

where

(k~

and the “prime” notation is used to represent differentiation with respect

to y. At this point the form of the foundation impedances are restricted

to take the following form:

(i) Z
Q
(Y) = _2ZM

(y) (8)

and

(ii) BIZM
(y) + n ZM(y) I >> ~ (9)

Thus Eq. 7 becomes

2 ”  4 3 2
~ (y) 

— 
~ (y) -I- r~ V ( y )  = ic~B tin ZM

(y)

+ Z~~(yfl?(y) — Z
M
(y)

~~~
(y) (10)

or

2 ‘~ 4 3 2 ~~~

~ 
(y) — 2n ~ 

(y) + r~ ~(y) = —i nh 3 t E n  Z
M ~~~~~~~

— Z~~(y )i (y) ( 11)

where

* 2
ZM (Y ) = Z M (Y )/ Nk X/cl ) - 11

= - W/n )Z~~(y) 
(12)

18
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The solutions to Eq. 11 yield the eigenvalues ( n )  as a function of B
*

and ZM
(y) .

Eq. 11 will now be compared to the Orr-Sorrmierfeld equation which ,

for completeness , is written below

2 ‘~ 4 2
• (y) — 2a 4~ 

(y) + a 4i(y) = —ic*R{ ((U(y) — c)a

+ U (y) J~~ (y ) - (U ( y ) - c)~~~(y)} (13)

•(y) is defined by the perturbation stream function ~(x ,y) which is assumed

to be of the form

‘~(x,y) = •(y)expiict (x — ct) (14)

x and y are cartesian coordinates parallel and norma l to the d irection of
flow, (J(y) describes the main flow, and R is the Reynolds number.

In dealing with boundary layers, U(y) represents the mean velocity

profile within the boundary layer arid all equations can be non-dimen-

sionalized whereby lengths are normalized to the boundary layer thickness

iS- ; velocities to the free stream velocity U ,  time by S/U0, and pressure
by pU2 where p is the fluid density.

For a given main flow profile the eigen values of the Orr-Sommerfeld

equation, as a function of Reynolds number , are given by the wavenumber
and phase velocity set (a,c) that satisfies Eq. 13. Referring to Eq. 14

it is noted that a . < 0 denotes spatially amplified disturbances with
increasing values of x. The subscript “ i” is used to denote the imaginary

component.

A comparison between Eqs. 12 and 13 reveals the following formal

analogy (Table 1).

19
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Table 1 — Mechanical Analogue to Para llel

Flow Stability

Parallel Flow Stability Plate Vibrations

(Orr—Sommerfeld Model) (Timoshenko-Mindlin Model)

iS 9.

x ,y x ,y

•(y) ~ (k ,y)

a ~ fl

R B
3

U(y)—c ±Z~~(y)

It is interesting to note the fol lowing :

1. Reynolds number (R) is analogous to the cube of the slenderness

ratio of the plate (B) whereby large Reynolds number corresponds to slender

plating.

2. The inviscid components of the Orr—Sommerfeld equation are

modelled by the plating while the mean—flow related , or viscid, components

are modelled by the locally reacting foundation upon which the plating

rests.

3. The critical layer, that is, the value of y across wh ich the

real component of the quantity [tJ(y) - ci changes sign , corresponds to

the value of y in the analogue across which the real component of the

foundation impedance [ZM
(y)1 changes sign. f

4. Neutral stability, whereby a and c are purel y real quantities,

corresponds to a completely conservative analogue system with the stipu-

lation that k > ~~.• x

20
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- 
- To complete the formal analogy the appropriate boundary conditions

must be included. This appears to be a potential strength of the analogy

since a vibrating plate can, in general , admit passive, as well as active,

and conservative as well as dissipative, terminations. Thus, for example
parallel flows between general impedance boundaries should be amenable

to the analogue. However, for present purposes, it is merely noted that

the classical boundary conditions for boundary layer flow over an effec-

tively rigid plane, which are given by

I 

- 
•(O) = • (O) o (l5a)

and

lim •(y) = lim • (y) = 0 (l5b)

are modelled in the analogue by a plate that is semi-infinite in extent

along the y axis and cantilevered f rom an effectively rigid termination

at the y = 0 boundary, i.e.,

Vk ,O) = ~~ (k ,0) = 0 (l6a)

and

lim j(k ,y) = lim ~(k ,y) = 0 (l6b )

Thus in theory , although it is not necessarily proposed here, if

one were to construct such a structure as is described above, and impulse

excite it such that all frequencies and wavenuxnbers were excited , then

the plate ’s response would contain the solutions to, i.e., the eigen-

values of , the Ort-Sommerfeld equation.

21
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B. Stability Phenomena in the Analogue System

In the previous section a formal analogue to the Orr-Sommerfeld

equation was presented . In this section some features of the solutions

to the Orr-Soniiierfeld equation, when applied to boundary layers, are in-

terpreted in terms of the analogue system. However, it is noted that

any application of these interpretations to experimental observations of

transition presupposes that the mechanisms governing the observations

are, in fact, captured by the linearized Orr-Somerfeld theory. It is

also rioted that in this section the spatial amplification formulation

to the solutions of the Orr-Sommerfeld equation will be used . That is,

the wavenuniber will be considered to be complex , ~ = a + ici ., and fre—

quency will be taken to be real w = ac = w . This leads to a spatia l

amplification factor of the form exp[-a .x) and thus negative values of

a . yield amplification and positive values of a . correspond to attenu-

ation.

1. Reduced Analogue for Divergence

“Divergence” as opposed to “flutter” is the particular

form of instability whereby wave amplitude varies monotonically with

- position. Divergence corresponds to solutions of the Orr-Sommerfeld

equation with purely imaginary values of a , i.e., a = iaj. In the

analogue system this implies that n is purely imaginary and thus

(k /a) < 1. In fact it is of particular interest to consider that this

condition be satisfied in the limit (k /l~) = 0. Limiting ourselves to

this situation the corresponding reduction in the analogue is shown in

Table 2.

To interpret this reduced analogue consider the analogue system in

Table 1 as a two—dimensional structural waveguide , albeit leaky along the

y axis. Since the plating itself is uniform the extent of this ‘ lea)c”

will depend on the variations in z
M
(y)

~ 
with strong variations tending

to reflect rather than transmit energy and thus minimize the leakage.

Each vibration mode of such a system, i.e., a mode with a given mode shape

in the y direction, will generally exhibit a high—pass cut-off frequency,

i.e., a frequency below which the mode cannot freely propagate along the

22
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Table 2 — Reduced Analogue for Boundary

Layer Divergence

Boundary Layer Stability Beam Vibrations

(Orr—Sommerfeld Model) (Timoshenko—t .jincjlin Model)

iS 9.
y y

i~i (y) ~ (O,y)

a ±ill
R B

3

U(y)-c ±Z
M
(y) ±iZ

M
(y)

x—direction. This frequency will be the natural frequency of the corre-

sponding standing wave mode of the waveguide cross-section along the y axis,18

and thus may be calculated by setting the x-direction wavenumber (k) equal
to zero in the equation of motion (Eq. 11). Therefore, the wavenumber (a)

of the divergent instability associated with a given phase velocity (c)

may be interpreted as the cut—off frequency (W of the analogue system

associated with a given foundation impedance Z
M

(y ). The reduced analogue

shown in Table 2 contains a number of interesting features:

1. Physically , the dimensionality of the analogue has been reduced

to that of a beam (in the y—z plane) rather than a plate.

2. Real values of c imply a purely imaginary foundation impedance

Z
M(y). This implies a non-dissipative foundation and thus the mechanical

analogue is a purely conservative system.

3. Assuming frequency to be a real positive quantity , the positive

sign for z
M
y implies ci = +i~ , and thus in view of Eq. 14, corresponds

to stability. Similarly, the negative option for Z
M
(y) corresponds to

an analogy where ci = -W and yields the unstable, viz, divergent, regime.

23
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2. Transition in the Reduced Analogue System

As discussed in Section III , the e’~ rul e is an empi r i ca l ly

based rule whereby if the disturbance whose frequ ency y ields the maximum
amplification factor at transition is assumed to cause transitiot , then

it is found that the value of the amplification factor itself is reasonably

constant and corresponds to n 9. This result is extraordinary in that

it is difficult to justify the linear theory in connection with such large

amplification rates. Now consider this criterion in the reduced analogy

system for divergence in the case of truly parallel flow where the am-

plification factor is constant in the flow direction and given by

x
I .

— 
~ a .dx = -a . A x = n
) 1 1

S.

where the subscripts N.S. and T refer to neutral stability .~d transition respectively.

From Table 2 an instability corresponding to a given amplification factor

is analogous to the response of the mechanical system at the frequency given

by i~ = in = i(ia.) = -a. = n/Ax. In other words, in the analogue system

the e5 
rule is not to be interpreted in terms of a critical amplification

factor , but rather in terms of a critical frequency.

3. Coupling of Disturbances to the Boundary Layer

in the Reduced Analogue System

Generally transition is assumed to require both wavenumber

and frequency (or phase velocity) matching in the flow direction with a

potential disturbance. However , since the analogue in Table 2 has been

reduced to the zero x-direction wavenumber component of the response of

the plating structure by setting k= 0 , wavenumber matching between the
structure and a potential disturbance merely requires that the disturbance

exhibit a zero x—direction wavenuinber component in its spectrum. In fact,

since the dimensionality of the reduced analogue is that of a beam (in

the y—z plane) rather than a plate, the condition of stability is a purely

local phenomenon with no coupling in the x, or flow, direction . A result-

ing instability might well be called a “turbulent spot.”
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The eigenvalues of the Orr-Soimnerfeld equation that are modelled

by this reduced analogue may correspond to the category of disturbance

generally referred to as Class C, since for this class there is apparen tly
no dependence of the amplification rates on wavenumber.9

It is also of interest to consider the behavior of the reduced

analogue structure for large values of y. Here the foundation impedance

becomes uniform since U(y) approaches the free stream velocity U .  The

resulting structure, that of a uniform beam resting on a uniform founda tion ,

will exhibit a cut-off along the y axis, i.e., normal to the boundary layer,

if the foundation is stiffness-like. This frequency may be calculated from

Eq. 11 by setting ~~~ the y-direction wavenumber component of the solution,

equal to zero as well as k
x 
= O~ This yields the cut-off frequency for

large y

3 *
~cut-off 

= -B Z
M

with the requirement that Z
M be negative. 

From Table 2 it is seen that

the analogue for divergence requires that 
yJ~~

{Z
M (Y)

} = -(1 - C) and thus

for potential disturbances with phase velocities typically associated

with transition , viz. c < 1, ZM 
is indeed negative. Therefore for a

divergent instability with c < 1 a cut-off frequency exists and it

increases with increasing slenderness rat io, i.e., Reynolds number , such

that for practical parameters this form of instabil ity can only be excited

by a disturbance in the near—field of the boundary layer.

4. Submarine Structure-Borne Noise in the Analogue System

Throughout this report, and indeed throughout most of the

relevant published literature, destabilization is assumed to require a

coincidence between the disturbance and those eigenvalues of the Orr-

Sommerfeld equation that imply wave amplification. In other words, for

example , the possibility of a phase velocity or wavenumber conversion

mechanism within, or in the immediate vicinity of. the boundary layer is

generally excluded .

However, the analogue system, and in particular the plate, allows
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two different characteristic modes of wave propagation . That is, for a

given frequency, the characteristic equation , being four th order as is
the Orr-Sormnerfeld equation , yields two branches corresponding to two

• separate wavelengths and phase velocities. (The effect of the foundation

will be to modif y these modes and most likely add an additional charac-

teristic mode, or modes.) Nevertheless, in general for a given excitation,

or disturbance , these two modes are coupled. In other words, within the

analogue system itself is an inherent mechanism for coupling between

relatively long and short wavelength motions. For example, in some cir-

cumstances, the mechanism for inducing relatively short wavelength

Tollmien—Schlichting instabilities into a boundary layer by means of

relatively long wavelength acoustic or structure-borne disturbances may

be a manifestation of this (linear) phenomenon. To be precise the coupling

would require coincidence between the distur bance and one of the stable

eigenvalues of the Orr-Sominerfeld equation , i.e., one that implies wave

attenuation, which would then be inherent ly  coupled within the boundary

layer itself to an unstable mode. The extent to which this represents

a potential destabilizing mechanism in connection with structure—borne

• noise in submarine hulls is beyond the scope of this study .
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APPENDIX A: THE RESULTS OF A LINEAR STABILITY ANALYSIS INTO THE EFFECTS

OF A BOUNDARY WHICH DISPLAYS FLExURAL-LrKE VIBPATIONS

1. Introduction

Presented in this appendix are the results of a study’4 in which the

inhomogeneous Orr—Sommerfeld equation is solved for the case of a travel-

• ing wave propagating along the boundary with constant amplitude , dfld rea l

wave number and frequency. In other words

v(x,o) = —iu~0 
exp[ik(x — ct)1 = —iw~ exp [i(kx — ut)) (Al)

where v(x,o) is the velocity imposed , and normal to, the boundary y=O

and 
~c 

is displacement amplitude. The results are interpreted in terms

of parameters relevant to the problem of structure-borne noise in sub-

marine hull  plating.

2. Results of Analysis

Using an approach analogous to that used by Benlamin13 for the home-

geneous case Becker is able to obtain explicit expressions for t1~~ wall

pressure and for the exchange of energy between the boundary and the

• adjoining fluid for certain asymptotic situations characterized by larqe

or small values of the parameter

2
b = C1= C

~
_ 

(A2)

For b small, these results resemble those of the planar Couette flow ,

which automatically excludes Tollmien—Schlichting instabilities , and is

therefore uninteresting as well as unrealistic. In contrast, for l3rge

b, Tollmien—Schlichting waves can arise.



The inviscid solution of the Orr-Sommerfeld equation yields the
time—averaged power flow per unit boundary area, from the wall into the
fluid :

E = — 
~~~~~ ~

2Im [4 1(o ) J  , b-~~ (A3)

where p refers to the density of water. In Eq. A3, F, is the velocity a~pli-
tude of the boundary, and Izn [~ 1(o) J the imaginary component of evaluated

on the boundary. The energy flow associated with the viscid solution, being
small for large b, need not be discussed. In view of Eq. A3 , only complex
or imaginary values of 

~l
(0) give rise to energy exchange. This restriction

is satisfied when U > c, i.e. when a critical layer (U(y) = c) exists.

This requirement is also obtained from Benjamin)3 For kó < <  1, i.e. ,

for all situations of practical interest, it is found that

4 “

U U
+ o )  = ¶W

2 
(1 — (A4 )

where U and U are derivatives of U ( y )  evaluated at the critical layer.

Combining Eqs. A3 and A4, one obtains

4

E = 
~~~ pc

2
&~u (~ - ; c<U , k i S < < l  , b-’°’ (AS)

For profiles characterized by U < 0, 4 1
(o) > 0, a negative value of E

results. This implies energy flow from the fluid into the boundary which

is characteristic of all inviscid stable solutions. For c > U , I
~l
(o)

is real, and E = 0.

Now, however, consider the case where the parameters w and c in

Eq. Al match the eigenvalues of the homogeneous equation which implies

c < U . Under these resonant or coincident conditions, for the Blasius

profile

- 

---
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= k ( b /2)~ , b ” °  (A 6)

where b is a Reynolds number , Eq. A2 , corresponding to neutral stability

of Tollmien-Schlichting waves , say , ui and k . Since Eq. A6 is positive,

this yields a negative value of H from Eq. A3, i.e. energy f low f rom the

• liquid to the wall. This appears to be consistent with Benjamin ’s solu-

tion , whereby Class A instabilit ies , i.e. Tollmien—Schlichting waves, are

enhanced if the boundary is damped .

Asymptotic solutions for both k~S c< 1 and kiS >> 1 indicate that energy

flows from the fluid into the boundary for large Reynolds numbers. Becker

speculates that this is a property of all velocity profiles which are stable

in the absence of viscosity, e.g. the Blasius profile. For unstable pro-

files, i.e. profiles displaying an “ i n fl exi on” point (or a point where

dU/dy becomes negative) a different situation arises. Here energy can

flow in either direction. For kó << 1 and k~ >> 1, •~~(o) < 0 for I) > 0,

which makes Eq. A3 positive. (The significance of this situation to hull  $

~~brations ir discussed in Section IV. B . )

4
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APPENDIX B: AN ASYMPTOTIC LINEAR STABILITY ANALYSIS APPLICABLE TO DISTURBANCES

AND BOUNDARY CONDITIONS ASSOCIATED WITH SUBMARINE HULL PLATING

1. Introduction

This appendix details the asymptotic solution to the Orr—Sommerfeld

equation subject to the assumptions listed below ,

a. R >> 1, i.e., Reynolds numbers are large.

b. c/U > >  1, i.e., the phase velocity of the potential disturbance

to the laminar boundary layer is much greater than the free stream flow

velocity.

Both assumptions are uniformly valid for practical problems with sub—

marine speeds and vibration spectra associated with propagatinq flexural

wa~es. The results of this analysis are applicable to the physical situations

depicted in Fig. 5 as Items 3 and 4, v i z . ,  situations when the disturbance is

introduced into the boundary layer other than at the boundary .

2. Analysis

For completeness, the Orr—Soimnorfeld equation is redefined

below

~
IV (y)_2a 2~ (y)+a4~~(y) = iaRt (U-c) [

~ (y)-a 2~~(y) 1-U ~ (y) } (Bi)

4 (y) is defined by the perturbation stream func t ion  t ( x ,y )  which is —

assumed to be of the form

~‘(x ,y)  i~i(y) exp [ici(x — ct)1 (B2)

x and y are cartesian coordinates parallel and normal to the direction

of flow. R is the Reynolds number. Al l equations are in non-dimensional

form whereby lengths are normalized to the boundary layer thickness iS ;

velocities to the free stredm velocity U ,  time by iS/U and pressure by

pU2 where p is the f l u id  dens i ty .

The stability problem is thus represented by the solution to Eq. Bl

~

-

~
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subject to appropriate boundary conditions.

Consider the case of parallel flow over a flat boundary of infinite

extent. The appropriate conditions at the outer edge of the boundary layer

can be expressed by

= ~ (=) = 0 (B3)

At the boundary, continuity of velocity tangential to the boundary dictates

that9

(1— c/Z
~

) [
~~~

(O) + (U (O)/c)I~ (0) ]

(B4 )

+ i(Z
~
c1R) ’[4 (0) — 

2
~~
’
(o)) = 0

where Z is the tangential impedance of the boundary.t

For the fourth boundary condition continuity of normal velocity is

prescribed in terms of the normal impedance of the boundary

p(O)/(—ictq (O)] = _Z
n (B5)

where p(O) is the perturbation pressure at the boundary.

Boundary conditions (B4) and (B5) pertain to the modifying effect of

a finite impedance hull on disturbances in the laminar boundary layer. The

x—momentum equation can be conveniently used to express p(O) in terms of
*

the stream function

2 ’p(0) = —i [~ (0) — e 4 ( 0 ) ] / ( e R )  + c~ (0) ~ U (0)t~,(0) (B6)

Consider the behavior of Eq. Bi for large values of R, i.e. R >> 1.

In this range, Eq. Bl can be satisfied via two mechanisms:

* 13This expression differs from that used by Benjamin which was
derived using the y—momentum equation and is of integral form.
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a. q exhibits large gradients thus making the left hand side of

Eq. Bl comparable to the right hand side or

~‘ 2b. ku — c)(~ — a — u i.

Mechanism (a) is a cause of considerable difficulty in developing numerical

integration solutions to Eq. 51.

Eq. Bl with R > >  1 is of the form of a singular perturbation problem

in that the highest ordered derivative term is multiplied by a small number,

namely c~ R
1
. This can result in large gradients being exhibited by the

solution in order to satisfy imposed boundary constraints. The classical

approach to such proHems is to define an “inne? solution that is valid

within the vicinity of those large gradients , and to “match” this solution
• , • • • • • 19 •with an outer solution that is valid beyond this region . The particular

problem under consideration is somewhat degenerate in that the first order

outer solution which is obtained by setting R = (or 1 0) in Eq. Bl,

is identically zero assuming the quantity ca
2 

< <  l~
0 

This means that the

inner solution must be uniformly valid across the boundary layer .

In order to obtain the appropriate inner solution, Eq. Bi is subjected

to a change in the independent variable in the form n y/c
5. The resulting

equation is then solved via a power series in t~ . We will only deal here

with the f irst  order approximation .

If the term (U — c) changes sign within the domain of the boundary

layer the appropriate transformation is given by n = l/3?0 This yields

a solution in terms of Bessel functions of order 1/ 3, and in turn the
familiar Tietjens function. However , for the case at hand, where

l u/c l << 1 throughout the boundary layer, a more convenient transforma-

tion results when n = 1/2. Thus the “stretch” variable ri is defined by

= y/e~ (B?)

Substituting Eq. 87 into Eq. 131 and allowing F =>O yields the equation

2
+ ic~~~~(~~) = 0 ( 1  ) 0 (B8)

The general solution to Eq. 88 is given by
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= Asin[(l + i)a~ ] + Bcos[(l + i)anj + C + D~ (B9)

with a = (c/2)~~.

However, Eq. B3 represents a severe constraint on Eq. 89 and yields
a non-trivial solution only if

C = D = 0 (BlO)

and either

B = -iA (Blla)

or

Relal = —Im[a] (Bllb)

Condition Bllb implies that c is imaginary and negative and this, in turn ,

implies a stable solution.

Thus, the problem is reduced to the task of determin ing if a solution
in the form

• = A(sin(l + i)an — icos(l + i)anl (B12)

is compatible with the boundary conditions represented by Eqs. 84 and B5 and,

if compatible, whether an unstable mode is possible. The fact that Eq. 812

exhibits only one free constant, A , requires a compatibili ty condition on
the boundary conditions themselves.

A solution exists only if

Z~ = —Z~~~(0 )/ [ ( U (0)/c )~~(O)  + •n(0)/c l (Bl3)

~~0 c - ~~O

Now , subjecting Eq. B6 to the coordinate transformation given by Eq. 87
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yields

cp (O) = —i [~~~~~(0) 
— (0)] + c~~~(0) + FU (O)~~(0) (B14)

Using Eq. B8 and dropping c terms yields the result

p(O) u (O)~~(0) (815)

which when substituted into Eq. 85 gives

Z = —iU (0)/a (Bl6)

If Eq. 816 is to be interpreted in dimensional form , then the right hand

side of the equation must be multiplied by p.

3. Discussion of Results

I-• Eqs. 813 and 816 give the values of the boundary impedances that are

compatible with a neutrally stable condition . It should be noted that for a

disturbance traveling in the same direction as the flow, i.e. (Re(a) > 0),

the required normal impedance is inertial. However, for a disturbance

traveling opposite to the flow, the impedance is stiffness—like . The effect

of energy dissipation within the boundary can also be analyzed from Eq. B16.

Boundary dissipation would correspond to a positive real component of Z .

However, from Eq. 816 this would require a negative imaginary component of

a which implies an unstable condition when Re(a) > 0 and a stable condition

when Re(a) < 0 (Eq. B2). Therefore the effect of boundary dissipation is

destabilizing for potential disturbances traveling in the d irection of
flow and stabilizing when the disturbance travels against the flow. More

importantly condition Bl3 which is required for an instability is ~ot
satisfied by present-day submarine hull construction .
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